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Hybrid quantum-classical optimization algorithms represent one of the most promising application for near-
term quantum computers. In these algorithms the goal is to optimize an observable quantity with respect to some
classical parameters, using feedback from measurements performed on the quantum device. Here we study
the problem of estimating the gradient of the function to be optimized directly from quantum measurements,
generalizing and simplifying some approaches present in the literature, such as the so-called parameter-shift rule.
We derive a mathematically exact formula that provides a stochastic algorithm for estimating the gradient of any
multi-qubit parametric quantum evolution, without the introduction of ancillary qubits or the use of Hamiltonian
simulation techniques. Our algorithm continues to work, although with some approximations, even when all the
available quantum gates are noisy, for instance due to the coupling between the quantum device and an unknown

environment.

I. INTRODUCTION

In the near-term [1]] quantum computers will be too noisy
and the number of operations, or depth of the circuit, will still
be too low to reliably implement conventional quantum algo-
rithms that require full quantum error correction[2]. There-
fore, alternative algorithms, better suited for exploiting these
devices have been proposed, such as the variational quantum
eigensolver [3} 4], the quantum approximate optimization al-
gorithm [3]], quantum autoencoders [6], quantum simulation
[7], and quantum classifiers for machine learning [8-H10]. Be-
cause of these applications, several companies involved in the
development of quantum computers have released software
for the manipulation of parametric quantum states [[11-H15].

Hybrid quantum-classical optimization algorithms, such as
the ones mentioned above, try to overcome the limitations
of current quantum computers by pairing them with a clas-
sical device. In these hybrid strategies, the “hard” part of the
algorithm, which typically involves the manipulation of ob-
jects living in a high-dimensional Hilbert space, is done by
a quantum computer, which is reset after each measurement.
The classical routine then iteratively reprograms the quantum
computer in such a way that either the output of quantum
measurements or the prepared quantum state have the desired
property. These iterative schemes allow the use of shorter-
depth circuits that can be implemented within the decoherence
time of the device. Typically, the manipulation of the quantum
state is performed with parametric quantum gates and the role
of the classical routine is to update those parameters either
via gradient descent or gradient ascent. Evaluating the gra-
dient of a quantum circuit is as hard as the evaluation of the
circuit itself, and therefore it is important to use the quantum
computer for estimating it. Several algorithms have been pro-
posed for such purpose, either based on a generalization of the
Hadamard test [[L6L|17] or on the so-called parameter shift rule
[L8H20], which have a similar complexity. Nonetheless, both
algorithms can only be applied when the parametric gates can

be written as e"eff(', for parameters 6,, and where the opera-
tors X; have certain special properties. In the general case one
has to resort to Hamiltonian simulation techniques [21] that
increase the complexity of the algorithm.

Here we show that the parameter-shift rule can be gen-
eralized to any multi-qubit quantum evolution, without the
need to introduce any ancillary system or Hamiltonian simu-
lation techniques. Our generalization is based on a stochastic
strategy that is exact in the limit of many repetitions of the
quantum measurement. We analyse the number of repetitions
needed to achieve a certain precision by studying the variance
of our estimation procedure, and numerically observe that it
is comparable to that of the standard parameter shift rule. In
near-term computers, unitary gates are an approximation to a
more complex, noisy evolution that couples the qubit registers
to an unknown environment. We show that our estimation pro-
cedure can be applied even when the coupling between system
and environment cannot be completely suppressed, and when
the gates depend on the parameters in a complex way.

Our paper is organized as follows: in Sec. [[I| we set up the
problem and the notation; in Sec. We discuss the main ideas
and introduce analytical formulae and algorithms for estimat-
ing the gradient in the general case; in Sec. [[V|we study ap-
plications in quantum control and for optimizing noisy gates;
Conclusions are drawn in Sec. [V] Explicit pseudo-codes for
our algorithms are given in Appendix [A] The stochastic vari-
ance of our algorithms is studied in Appendix

II. BACKGROUND AND NOTATION

We focus on parametric quantum states |i/(@)) that depend
parametrically on P classical real parameters {6,} with p =
1,...,P. These states are obtained by applying a unitary U(8)
onto a #-independent reference state |yg)

lw(8)) = U(O) lro) - (D



We study the optimization (either maximization or minimiza-
tion) of the expected value of an observable C, taken with
respect to [(60))

C(6) = Wol U@ CU®) o) - )

Several problems can be mapped to the above optimization,
such as variational diagonalization and quantum simulation
[3L 15, 22], where C is the Hamiltonian of a many-body sys-
tem and the task is to variationally approximate its ground
state; and quantum state synthesis, where C = [Yrarget) Wrargets
or some machine-learning classifiers [8} [16]. Even quan-
tum control problems [23] or the simulation of gates with
time-independent Hamiltonians [24, 25]] can be written in the
form (@). Indeed, consider the task of finding a good approx-
imation of a certain target unitary gate G with a parametric
unitary U(6). We may define [y(6)) = i ® U(0)|D), where
|®) = 3¢, |i,i)/ Vd and d is the dimension of the Hilbert
space, and similarly [/ arget) = i ® G |®). Then, from @) with

C= |lﬁlarget><wtargel|, we find
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which is the function normally maximized in quantum control
problems [23} 24].

Any unitary operator can be expressed as a matrix exponen-
tial U(0) = ¢X®, where X(0) is a Hermitian operator. When
the unitary U(6) is a composition of 7' simpler gates U,(6),
then we write

T
0®) = [, 00 =, @
t=1

where the products are ordered as [, U, := Ur --- U;. The
products of Pauli matrices & = 6, ® --- ® J,, form a basis
for the space of N-qubit Hermitian operators [26]], where v =
(V1,...,vn)is amulti index, v is either {0, x, y, z} and 5 := ﬁ,
O, 0y, 0 are the Pauli matrices. As such, we may expand the
operators X,(6) onto this basis and write

20 = > 5,05y, (5)

v

with coefficients x;,(0) = Tr[Y,(O)é'V] /2N, It is common to
restrict attention to gates that only have a single element in
the expansion (), i.e. x,,(8) = 6,6, and
U™ = exp(if, 61r)) » (6)

where v(7) specifies the kind of parametric gate applied at time
t. Moreover, most often we consider gates that act on either
one- or two-qubit, so at most two Pauli matrices in the product
0y, ®---® d,, are different from the identity.

On the other hand, in this paper we do not restrict ourselves
to the case (6) and consider the more general parametrization
(@) with (3)). Via the Leibniz rule, we may write

oc(o) OC 0x,,(0)
a6, & Xy a6,

: (7

When the parametrization is such that all gates can be ex-
pressed as in Eq. (6), different approaches have been pro-
posed to evaluate the gradient via a carefully designed quan-
tum circuit and classical post-processing, for instance using
the Hadamard test [17] or the parameter shift rule [[18}[19]. In
[20] the parameter shift rule was generalized to some particu-
lar cases where there are more than one term in the expansion
(). However, finding the gradient in the general case was still
an open question. In the next section we show that by mixing
standard operator derivative techniques [27]] with Monte Carlo
strategies, we can define a procedure to measure gradients of
any C(6), as in Eq. (Z), with near-term quantum hardware.

Thanks to the Leibniz rule (7)), we may fix the value of ¢
and v and study the derivative of C with respect to x;,. By re-
peating the analysis for each possible values of 7 and v, from
Eq. we may obtain the derivatives with respect to the pa-
rameters 6, and hence the gradient. Therefore, we fix # and
v and, to simplify the notation, we drop the dependence on ¢
and v to write

A N

X=Xy, V=0, A=) 5,0, ®)
HFEY
With a similar spirit, we also define
-1
19y = [ [ Os o) , A:=0/¢0., O
s=1

where U,, = []°_,,, U,. Thanks to the above simplified no-
tation, we may write the function C in (@) as a function of

X = x;, for fixed t and v
C(x) = (@l e AV f BV gy (10)

all the other terms in (T0) do not explicitly depend on x = x;,.
In other words, Eq. (I0) is equivalent to Eq. (Z), where we
have separated the terms that depend on x = x;, for fixed ¢
and v from the others.

III. STOCHASTIC PARAMETER SHIFT RULE

Without loss of generality, we fix 7 and v as described in the
previous section, and study the derivative of C(x) defined in
(TI0). The derivative with respect to the parameters 6, can be
obtained from (7)) by repeating the analysis for all 7 and v. We
remark that in Eq. (I0) the state |¢) and the operators H, A,
V explicitly depend on 7, v, and on the other values x, ,, with
either ' # t or v’ # v, but we omit this dependence to simplify
the notation. Full algorithms are shown in Appendix [A]

The main tool behind our analysis is the following operator
identity [27]]

de< b .
¢ =f dse‘za—ze(l_”z, (11)
0

x x

which is valid for any operator Z. We may rewrite Eq. (I0) as

C(x) = Tr(Ae?[p]) . (12)



Algorithm 1 Parameter Shift Rule

Algorithm 2 Stochastic Parameter Shift Rule

1: initialize the computer in the state |¢), following the preparation
routine (@O); )

2: apply the gate ¢-+7);

3: measure the observable A from (g) and call the result 7.

4: Repeat steps 1 to 3, but on point 2 apply /*~#)" rather than
REE2

5: measure A and call the result 7_.

6: the sample g,, = u(r, — r_) is such that dC/dx,, = E[g,,].

) et |

u(ry —r-)
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FIG. 1. Parameter Shift Rule [18} [19, [29]], only applicable to para-
metric gates as in Eq. (6) or, more generally, to parametrizations ¢™"
where V has two distinct eigenvalues +u. When V is a product of
Pauli matrices as in (6), # = 1. In the algorithm we consider the
derivative 9,C(x) of Eq. (T0), when H = 0.

for p = |¢)(¢| and for a superoperator Z[p] := [i(H + xV), p],
where [A, B] = AB - BA. Eq. (T2) then follows from Baker-
CampbellHausdorfF identity e/*1¥ = ¢X¥e* [28]. We also
introduce the superoperator

V= = =V, (13)

Now we focus on the exponential 'V with V defined in (T3).
From series expansion, since V is a tensor product of Pauli
matrices (§)) and, as such, V2 =1,itis simple to show that

dﬁm=ﬁ+ﬂﬁum¢0—m+§amynﬁm, (14)
from which we get
AV 9e'V A /4)V A=r/4)V
Ve w537w=éw>w—éw>w.<m

When H = 0, it is Z = x‘V and we may use the above equa-
tion with A = x to take derivatives in (I2). As a result, we get
0,C(x) = C(x + m/4) — C(x — n/4), which is the so-called pa-
rameter shift rule, described in Fig. [T} often used for training
quantum circuits [[18}19,29]. Note that, with the formalism of
the previous section, A = 0 corresponds to the use of the sim-
per parametric unitaries of Eq. (6). A more general version of
the parameter shift rule can be obtained when the operator V
has only two distinct eigenvalues [18, [19]. Indeed, we note
that the only property we used in is V2 = 1, which is true
for any product of Pauli matrices. If V has only two possible
eigenvalues ¢ + u, then we may write V = uV’ + ¢l where
V2 = 1 and the dependence on ¢ disappears in (T3). There-
fore, it is straightforward to generalize the above derivation
and find 0,C(x) = u [C (t + 4114) - C(t - 41“)] The resulting
algorithm is described in Fig.|I} Although the parameter shift
rule can be made slightly more general, for instance by re-
placing the operator &, in (6) with another operator that has,

1: Sample s from the uniform distribution in [0,1];

2: initialize the computer in the state |¢), following the preparation
routine (@); o

3: apply the gate e!~9#*+V) namely where parameters x,, for
fixed 7 and all possible values of u have been rescaled by a factor
(1= .

4: apply the gate /% = ¢

5. apply the gate e*#*") where parameters x;, for fixed ¢ and all
possible values of v have been rescaled by a factor s;

6: measure the observable A from @D and call the result 7, .

7: Repeat steps 2 to 5, but on point 4 apply ¢”*/* rather than
inov/4.

8: measure A and call the result r_.

9: the sample g,, = r, — r_ is such that dC/dx,, = E[g;,].

in6ry /4.
;
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FIG. 2. Stochastic Parameter Shift Rule, valid for any operator A. In
the picture, the values of the classical parameter s are the same.

like 6, only two possible degenerate eigenvalues, it cannot
be applied in the general case where H # 0. Nonetheless,
we show that the parameter shift rule can be generalized by
combining Eq. (T3) with Eq. (TI). Indeed, evaluating (I35) for
A =0 we get

0ZI10 N o o o IS
Z[P] — l[V,,ﬁ] — emv/4ﬁe—1V7r/4 _ e—mV/4ﬁetVn/4 . (16)
ox
From the above equation, calling
Ca(x,8) =(H Us(x, )" AU(x,9)19) , (17)
U.(x, s) = eis(ﬁ+x\7) etigf/ ei(l—s)(F]+xV) ) (18)
we get from (IT)) and
1
0,C(x) = f [Ci(x,8) = C_(x,9)]ds . (19)
0

Eqs.(T7)-(I9) represent the central result of this paper. Thanks
to those formulae, we introduce the Stochastic Parameter Shift
Rule, shown in Fig [2| The derivation of the Stochastic Pa-
rameter Shift Rule from Eq.(T9) is straightforward. Indeed,
let A = 3, a, |m)(m| be the eigenvalue decomposition of A.
Then, because of the Born rule, the outcomes r,. are one of the
possible values a,, with probability

p(mls) = [(m| Us(x, 5) |9y > . (20)

Taking the expectation value with respect to the measurement
outcomes and with respect to the uniform probability over s

we get from Eq. (T9)
Elry —r-1=0.C(x), (2D



which concludes the proof. For a single measurement, both
the Parameter Shift Rule of Fig.[I]and the Stochastic Parame-
ter Shift Rule of Fig. 2] provide a random difference between
two eigenvalues of A. Only in the limit over many repetitions
of those algorithms does the average over the outcomes con-
verge to the exact value of the gradient. Due to the Chebyshev
inequality, the number of repetitions to achieve a certain pre-
cision depends on the variance of the random outcomes. In
Appendix [B| we study the variance of the gradient estimator
obtained with the Stochastic Parameter Shift Rule and show
that it is comparable with that of the standard Parameter Shift
Rule.

A. Stochastic optimization

In the previous section we have introduced an algorithm
(Fig.2) to use a quantum computer to sample from a random
variable whose average is equal to the gradient of a certain
circuit. We say that the output of the Stochastic Parameter
Shift Rule provides an unbiased estimator of the gradient, in
the sense of Eq. (Z1).

We now focus on the original problem, namely a parametric
unitary @) with many parameters as in (3). We can use the
algorithm of Fig. 2]to sample g;, with the property dC/dx;, =
Elg:v]. By repeating the procedure many times and with all
possible values of ¢ and v, due the linearity of the Leibniz
rule (7), we may write

0C(0)

6 ty 0
= Eiz S );9,(7 )l , (22)

where the expectation value E has the same meaning as in
Eq. Z1I). The full algorithm is shown in Appendix [A] algo-
rithm [4] The problem with this approach is that we have to
repeat algorithm [2] many times, each time resetting the quan-
tum machine, to get a single sample.

We now introduce a simpler unbiased estimator of the
gradient that requires significantly fewer operations to get a
single sample. A similar technique has been developed in
[L7,29] for parametrizations as in Eq. @, which was dubbed
doubly stochastic gradient descend. Here we generalize that
approach to general quantum evolution, as in Eq. (). We
start by defining a probability distribution from the “weights”
0px:,(0), where 0, = ae =, as

1
N

9x,(6)
a6,

qp(t,v) =

L am =1, (@23

with N = 3, 10,x:,(0)|. Setting np,,, = Nsign (a,,x,,v(e)) we
may then write Eq. (22)) as
0C(0)

38, - e, [ E800)] - (24)

where E ,)., means that, at each iteration, ¢, and v are sam-
pled from the distribution (23). When the functional depen-
dence on the parameters is known, all quantities ¢,(z, v) and

np:y can be easily computed at each iteration without having
to deal with exponentially large spaces. The above equation
(24) allows us to define a simple “doubly stochastic” gradient
estimator via the following rule

1: sample ¢ and v from the distribution @]);

2: use Algorithm[2]to get an estimate g, ,;

3: the sample r,;, = g1y1, .y is such that 0C/30, = E[ry,,].
The full algorithm is shown in Appendix [A] algorithm [5]
Based on the above equation, in Appendix[A]we also define an
algorithm that can provide an unbiased sample with a single
initialization of the quantum device, algorithm [6]

To summarize the results of this section, we can use either
(22) or (Z4) to estimate the gradient of an expectation value (2)
with a quantum computer. Once we have an estimate of the
gradient, we can optimize C(6) using stochastic gradient de-
scent (or ascent) algorithms [30], such as Adam [31]. These
algorithms are classical, in the sense that, given certain pa-
rameters 6 and an estimate of the gradient g, the parameters
are updated as @ — @ +ng for a suitably small learning rate n.
Therefore, we can use a hybrid quantum-classical approach to
optimize C(f) where the hard calculations, namely the esti-
mation of the gradients, are delegated to a quantum computer,
while the update of the parameters is performed classically.

B. Quantum gates with unavoidable drift

Depending on the hardware, the application of the gates
e*™V/* in Algorithm might be problematic. Let us consider
a quantum computer that can only apply the parametric gates

U(t, b) — eit(ﬁo+bﬁ1) , (25)

where Hj is some drift Hamiltonian that cannot be completely
switched off, aside from the trivial case t = 0. Such “simple”
device is still capable of universal quantum computation, pro-
vided that the operators Hy and H, are multi-qubit operators
that generate the full Lie algebra [32]]. Here though, for sim-
plicity, we consider the case where both Hy and H are tensor
products of Pauli operators, as introduced in Sec. [lIl The pa-
rameters in the above gate are 6 = (¢, b). Using the notation of
Eq. (5) we may write

0(t,b) = eoforuf) (26)

where xo = ¢t and x; = bt.
Eq. @), from (7)) we get
ac  aC

0,C=—+_—b,
! 8x0+6x1

Employing the above gate in

0,C = a—Ct . 27
6x1

An estimator of ac for j = 0,1 can be obtained with Algo-

rrthml where V 1s, respectively, either Ay or H,. Step 3 in the
algorithm corresponds to U((1-s)t, b) and Step 5 corresponds
to U(st, b), so both operations can be easily implemented di-
rectly in the device. Step 4 corresponds to the gate U(r/4,0)
when estimating 7~ a_c , which is again easy to implement. How-

inH, /4

ever, Step 4 for estlmating corresponds to the gate e



Algorithm 3 Approximate Stochastic Parameter Shift Rule

1: Sample s from the uniform distribution in [0,1];
2: form = {+,-} do

3: initialize the computer in the state |#);

4: apply the gate e/t!~IU+V);

5: apply the gate e “I#+7/@V] where the sign depends on m;
6: apply the gate e+,

7: measure the observable A and call the result T

8: end for
9: An estimate g,, of 0C/0x,, is given by g,, = r, —r_.

FIG. 3. Approximate Stochastic Parameter Shift Rule. A compact
notation has been used, as this algorithm is identical to the one in

Fig. |2} except for the use of the imperfect gates e'l#*7/“oV1 ip lieu of
ein/ 4v .

that does not belong to the set of gates (25) and, with our as-
sumptions, cannot be implemented by the device. However,
we may substitute that gate with an approximation

Ule o) = =) = i o). (28)
4e

The error coming from the drift term can be small O(e) if it is
possible to set b to a high value O(e™'). With the above gate,
in Fig. 3] we define the approximate Stochastic Parameter Shift
Rule. The approximate gate introduces a bias in the gradient
estimator, but since such bias can be made small, convergence
can still be expected [33]].

As a relevant example, we study the cross-resonance gate
(19 20]

Ucr(t,b,0) = exp it (6:@f - b 606, + ced)] . (29)

a natural gate for certain microwave-controlled transmon su-
perconducting qubit architectures [34]. The results are shown
in Fig. E] for different values of ¢, ¢ and b, where we show
that Algorithms [2] and [3] are basically indistinguishable from
each other, and very close to the approximated value obtained
numerically, without any randomness, using a finite differ-
ence approximation. All numerical results are obtained by
analytically computing the probabilities (20) and then simu-
lating the quantum measurement via Monte Carlo sampling.
The finite difference approximation is obtained as 9,C(x) =~
(2e)"'[C(x+&)—C(x—e&)]. Note that, although this approxima-
tion works fine for numerical approximations using a classical
computer, it is not useful for calculating gradients on quantum
hardware. Indeed, if we use a quantum device for estimating
C(x + &), then the estimator of C, has a variance ~ £ which
is very high when & is small.

IV. APPLICATIONS
A. Quantum control with drift

The control of a quantum system is obtained by modulating
the interactions via time-dependent pulses. Calling A;(?) the

Exact gate

Approx. gate
= Finite difference

b=0.5

L L
0.00 0.25 0.50 0.75 1.00
t
2 =
(b) t—1
11 \
Q
=
S o} t=0.5
Exact gate
-1} Approx. gate
t=2 m— Finite difference
| L | I
0.00 0.25 0.50 0.75 1.00
FIG. 4. Gradient of Eq. (Z) when using the cross-resonance gate

9). In (a) we study 9,C for ¢ = 0 and fixed values of b = {0.5, 1,2}
with € = 0y, ® 1. In (b) we study 9,C for ¢ = V2 and fixed values
of r ={0.5,1,2} with € = 0y, ® . We compare the finite difference
approximation, with the estimations from Algorithm [2] (Exact gate)
or(Approx. gate). Approximated gates are with € = 1072, Data for
the stochastic algorithms are obtained from (2Z) with 1000 samples.
Coloured regions represent the area m + o where m is the estimated
mean and o the standard error of the mean.

external pulses and Vj the associated operators, the evolution
is described by the following time-dependent Hamiltonian

M
A = Ao+ Y 4,075, (30)
j=1

where M is the number of pulses and Hy is the drift Hamil-
tonian that describes the time-evolution of the system when
no-pulses are applied. Here we consider M = 1 as the gener-
alization is straightforward, and set 4, = 1 and V; = V. By
discretizing the control time 7 into Ny = T/AT steps of width
At we get

Nr
0(T) ~ 1_[ e—iAT(Hg-Hl(pAT)V) (31)

p=1

with error ~ NyAT?. Pulse design corresponds to the opti-
mization of the parameters 6, := A(pAT) to achieve a de-
sired target evolution [23]], for which we can apply the proce-
dure of the section An alternative is to expand the pulse
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FIG. 5. a) An example parametric quantum circuit with parametric
gates as in Eq. (). b) A noisy version of a), where unitary gates
are replaced by non-unitary channels. c¢) A representation (32) of
the noisy gates in b), where each noisy operation is represented as a
unitary gate between the qubits and an independent environment (in
red).

in the Fourier basis A(t) = ), @, cos(wit + ¢y) for some fre-
quencies wy and tunable amplitudes a,, and phases ¢y [35].
Therefore, we may use together with the procedure of
Sec. [T to estimate the gradient with respect to the parame-

ters {6,} = {am, Pm)-

B. Parametric circuits with noisy quantum gates

One of the main strengths of our Algorithm 3] and its gen-
eralizations in Appendix [A} is its ability to work, under rea-
sonable assumptions, even when parametric gates are not per-
fectly implemented by the device. This is the case in currently
available and near-term quantum computers [1].

As a relevant example, consider the quantum circuit of
Fig.[3] built from simple parametric gates as in Eq. (6). When
the quantum computer can apply the exact gates, then the stan-
dard parameter shift rule can be employed. However, quantum
devices are always in contact with their surrounding environ-
ment, so an exact application of the gate is impossible (with-
out full quantum error correction). More precisely, due to the
action of the environment the gate is not unitary but, under
some reasonable approximations, can be described by a com-
pletely positive map [36,[37]]. A completely positive map can
always be written as a unitary evolution on the register and its
environment. For simplicity let us consider a perfect gate as
in (6) with fixed 7. Physically, the perfect gate (6) means that
a control Hamiltonian A® := -6, is switched on for a time
6,, where the index (R) reminds us that the Hamiltonian acts

on the registers R only. In realistic implementations the regis-
ter is coupled with its own environment. If we call H,(RE) the
coupling Hamiltonian between register (R) and environment
(E), then we may write the non-unitary gate (see also Fig. [5k)
as

. (RE) (R) . (RE) (R)
8[(0)[p] — TrE e_”[Hr +0H, ],OR ® O—EelT[H’ +0H,"] , (32)

where o is the state of the environment, 7 is the control
time, and 6 is the relative strength between Ht(R) and H;RE).
In Eq. (32)) there are three main approximations: i) we neglect
any initial quantum correlation between register and environ-
ment, so that the non-unitary evolution can be modeled as a
completely positive map [36], which in turn implies (32)); ii)
we assume that the (unknown) initial state of the environment
does not depend on 6 and 7; iii) we assume that it is possi-
ble to tune both 7 and, to some extent, the relative strength 6.
Under these three conditions, it is possible to use Algorithm [3]
and its generalizations of Appendix [A]to compute the gradi-
ent with respect to 8. Indeed, without loss of generality, we
may consider H,(R) as a product of Pauli matrices acting on
the register R. When this is not the case we may employ the
Leibniz rule (7). All operations in Algorithm [3] are possible,
with the substitution Hy = FIERE) and V = I—AIt(R). The rescaled
gates correspond to reducing the control time 7 by either a
factor (1 — s) or s, while the application of the approximate
gate (28) can be obtained by making @ large. Note that in a
good quantum computer, the factor 6 should always be large,
as the coupling between register and environment should be
small. Therefore, derivatives with respect to 6 can be obtained
using the same operations available in the device.

On the other hand, derivatives with respect to 7 are, in gen-
eral, not possible. We may always expand the coupling Hamil-
tonian in the Pauli basis via (5) and use the Leibniz rule (7),
but in order to obtain the derivative with our Algorithm (G)),
we have to approximate a highly tuned gate of type e/ 468
which couples the system and environment. We believe that
for reasonable models of environment, this is not generally
possible.

In summary, when the noisy evolution can be written as in
Eq. (32), under the approximations defined above, derivatives
with respect to 6 can be obtained with the same operations
available in the machine, while the further parameter 7 should
only be used to implement the rescaling and not as an opti-
mization parameter.

C. Quantum Natural Gradient

The quantum natural gradient has been proposed in [38.39]
as a way to better describe the geometry of parametric quan-
tum states, enabling faster convergence towards local optima.
With the quantum natural gradient the update rule becomes
0 — 6 +nF'g, where g is the gradient and F the met-
ric tensor. The role of the metric tensor for noisy paramet-
ric quantum evolution has been studied first in [40]], where it
was shown that it provides a method to investigate the conver-
gence time of standard stochastic gradient descend. When us-



ing the simple parametric gates of (@), the elements of this ten-
sor can be measured efficiently [22, [38]]. Moreover, recently
the quantum natural gradient has been extended to arbitrary
noisy quantum states [39]. In particular, for slightly mixed
states it is

Epp = KkFpp, = [ % 6p] ; (33)
where k = 1 for pure states and p is the state after the para-
metric unitaries that, for either noiseless or noisy gates, we
can write as p(6) = Er(0) o - - - 0 E1(B)[po] with po = o) {Wol.
We focus on F,, ,» as the parameter k can be absorbed into the
learning rate. The approximation in (33) is valid when the
state has a high purity [39] , as it is expected in good NISQ
computers. We may measure the matrix in Eq. (33) using a
combination of the Stochastic Parameter Shift Rule and the
SWAP test. The latter is based on the simple observation that,
for any X and Y, itis Tr[f(f/] = Tr[§ (X ® f/)], where $ is the
swap operator [22]. Using the SWAP test and Eq. (7) we get

A 0P op Oxry Oxy
F,, = Tr|$ v Iy (34
= ) r[ ((9x,’,, ST )] a6, 06, (34)

[AARA

Then, thanks to our analysis from section [[II, we may write

o 0P _ 9p
F (V) = T S - 35
(v r[ (6)6,,,, ® Oxry )] >

1 1
= Z aa’j(: ds‘f0 dS’TI'[S (ﬁt,v,s,a ®ﬁt’,v',x’,a')]:

a=+,0'=+

where p, ..+ is the state in which the gate U, has been substi-
tuted by the gate U.(x;y, s) from Eq. (I8), or its noisy imple-
mentation as in Sec. Therefore, an estimator of the ma-
trix elements of the Fisher information matrix can be obtained
by sampling two real numbers s and s” from the uniform distri-
bution, and then measuring the overlaps of all quantum states
Prvsa and py s o o via the swap test. Note that for noiseless
gates the overlaps in can be simplified in some cases.
For instance, when ¢’ = 7 all the gates in the product @) with
larger t disappears from the overlap. It was found in [38] that
a good approximation to the natural gradient can be obtained
by using only the diagonal elements of F. Motivated by this,
we study what happens when we fix  and v and call x = x;, as

in Sec. [} With the notation of Eqgs. (9) and (10), using (TT)
we may write

op op P ¥4
F =Tr|——=—| = Tr| —[0o] — [0 =
) Y) r[ O O r( o (0] o [60]

1 1
- fo ds fo ds' Ti{iTV(s). poliL V(). o) =
=2(F, - |F\ ), (36)

where pg = [)(@l, V(s) = eSH+Peil-1H+xV) and we have
defined

1 1
Fr= fo ds fo s @ VeV . (BT

1
Fy = fo ds (9 V(s)19) . (38)
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Since V is a product of Pauli matrices V(s) is a unitary oper-
ator, so both F, and F| can be measured by first sampling s
and s’ from the uniform distribution, and then measuring the
expectation value using the Hadamard test [41]].

V. CONCLUSIONS

We have studied the optimization of a cost function defined
by taking a quantum measurement on a parametric quantum
state, obtained by applying on a fixed reference state a con-
trolled evolution with tunable classical parameters. We have
found explicit analytical formulae for the derivatives of the
cost function with respect to those classical parameters. Our
formulae can be applied to any multi-qubit evolution and gen-
eralize the so-called parameter shift rule [[18[19] to the general
case, without any restriction on the spectrum of the operator,
and without the use of ancillary qubits or Hamiltonian simu-
lation techniques [21]].

Based on those exact formulae, we have devised both exact
and approximate algorithms for estimating the derivatives of
the cost via carefully designed quantum circuits. The exact
algorithm works when exact applications of the gates are pos-
sible, whereas the approximate algorithm is designed to tackle
spurious interactions in the system that cannot be completely
removed. As such, our algorithm can also be applied, though
with some approximations, when the gates implemented by
the quantum device are noisy, as it is the case in near-term
quantum devices [[1].

The main application of our study is to optimize para-
metric quantum evolution for quantum optimization [3] and
machine-learning problems [10].
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Appendix A: Explicit algorithms

In this appendix we discuss more explicitly all the steps to
define unbiased estimators of dC/d6, that can be measured
with the Stochastic Parameter Shift Rule. The full version of
Algorithms 2] and [3]is the following:


https://qhack.ai/
www.x.company

Algorithm 4 Stochastic Parameter Shift Rule, Eq. (22)

1: Sample s from the uniform distribution in [0, 1];

2: setg, =0;
3. forr=1,...,T do
4 for all v such that 9y, x;,(0) # 0 do
5: for m = {+,-} do
6: initialize the computer in the state [i));
7 sequentially apply the gates U, for’ =0...,1— 1
to prepare the state |¢) in Eq. (9);
8: apply the gate U1~ = ¢1=9%®) by rescaling all
parameters;
9: if gates ¢*'$% are available then
10: apply the gate "3,
11: else
12: apply the best approximation of "4,
for instance using (28));
13: end if X
14: apply the gate U} = %@,
15: sequentially apply the gates U, for#’ =t +1,...,T;
16: measure the observable € and call the result Fingvs
17: end for
18: Set gry = Fapy — T 15
19: update g, = g, + g, X:.,(0)
20: end for
21: end for

22: the sample g, is such that dC/06, = E[g,].

By repeating the analysis of Sec. we find that
9C/d6, = E[g,l, so by repeating Algorithm ] many times
we may estimate the derivative dC/86,, with the desired pre-
cision. A simple counting argument shows that the number of
operations to obtain a single outcome is O(2TN,) where N,
is the number of non-zero 0gpx,,y(0). Note that Step 1: in Al-
gorithm [4] can be moved to any other point point before Step
8. By linearity, the average is always the same, although each
iteration might have a different value of s. We can reduce the
number of operations to get a single estimate with the follow-
ing algorithm:

Algorithm 5 Doubly Stochastic Parameter Shift Rule,
Eq ()

: Sample s from the uniform distribution in [0, 1];
2: calculate the probability distribution g, (¢, v) defined in Eq. 23)
and set i, as described in Sec.
: sample (¢, v) from g,,;
: form = {+,-} do
initialize the computer in the state |y);
sequentially apply the gates U, for =0...
the state |¢) in Eq. @);
apply the gate U5 = 1-9%® by rescaling all parameters;
if gates ¢*'1% are available then
apply the gate "%,
else
apply the best approximation of e” 3%+
for instance using (28);

,t—1to prepare

._
oY ®

—_—

12: end if
13: apply the gate Uf =e¢
14: sequentially apply the gates U, for’ =t +1,...,T;
15: measure the observable € and call the result Tintvs
16: end for

17: the sample g, =

isX:(6).
N

(Fity = T—1y)Np sy is such that 9C/06, = E[g,].

In Algorithm (3) the quantum computer is still reset twice
to have a single estimate. Below we define an algorithm where
the computer is initialized only once

Algorithm 6 Single-measurement sample of dC/d6,

1: Sample s from the uniform distribution in [0, 1];
2: calculate the probability distribution ¢, (¢, v) defined in Eq. 23)
and set n,,,, as described in Sec.
: sample (¢, v) from g,;
4: initialize the computer in the state [);
. sequentially apply the gates U, for? =0...,
the state |¢) in Eq ©b;
. apply the gate U/~ = ¢I=9%® by rescaling all parameters;
: sample m € {+1, —1} by tossing a fair coin;
. if gates e*'3%% are available then
9: apply the gate "% ;
10: else
11: apply the best approximation of ¢”i% e.g. using @8);
12: end if
13: apply the gate U? = e
14: sequentially apply the gates U, for# =t +1,...,T;
15: measure the observable € and call the result r;
16: the sample g, = 2mrn,,, is such that 0C/06, = E[g,].

(98]

W

t — 1 to prepare

[o BN B

isX,(6).

The above algorithm corresponds to rewriting Eq. (T9) as

1
0,C(x) = m | 2Cnu(x,s)ds . Al
(x) mZmpfo (x,5)ds (A1)

with probabilities p, = % Putting explicitly the dependence
on ¢ and v we get from (24) and from the notation (§)), (9)

BC 0
( ) Zmnptvpmqp(t V)f 2<¢tvvm|c|l//t)/9m>ds
tLy.m
(A2)
wherem =+,t=1,...,T, and
Wi sm) 1= ]_[ 0,0, Ym’"/“"vU*]_[Uﬂ Wo) . (A3)

=t+1

Appendix B: Variance of gradient estimators

By comparing the standard Parameter Shift Rule (Fig. [I)
and Stochastic Parameter Shift Rule (Fig. [2) we see that the
latter has an extra source of randomness due to the sampling
over the classical parameter s. The stochastic outcomes of
these two algorithms have the same mean, namely the gradi-
ent of the cost function, so in the limit of infinitely-many rep-
etitions of the experiment these algorithms provide the same
result. However, the variance of the estimators obtained with
the two algorithms might be different. Assuming independent
identically distributed samples, the variance quantifies the ex-
pected error when a finite number of measurements is per-
formed, so it is important to study whether the extra stochas-
ticity of the Stochastic Parameter Shift Rule increases the vari-
ance of the gradient estimators.

We first study the gradient of C(z,b) obtained with C =
Gy ® &, and the cross-resonance gate (29), as in Fig. [ but
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FIG. 6. Empirical standard deviation of the gradient estimator of

0,C(t, b), with the same notation of Fig. mb), for ¢ = 0 and different
values of b. The Standard Parameter Shift Rule corresponds to Al-
gorithm For each point, the STD is estimated using 10* samples.

STD(8,C)

STD(8,C)

" 0.00 0.25 0.50 0.75 1.00

FIG. 7. (a) Empirical standard deviation (STD) of the estimator from
Algorithm using A = A, and V = V, from Egs. (BT), for different
numbers of qubits N. (b) STD of the gradient estimator obtained
via the (standard) Parameter Shift Rule, for a related problem with
A = 0, shown in Eq. (B2). In both (a) and (b) the plots are shown for
different values of the parameter x, as in Eq. (I0), while the STD is
estimated via 1000 samples.

with ¢ = 0. When ¢ = 0 the operator in the exponential has
two possible eigenvalues u = + V1 + b2, so for computing the
derivative 9,C we can also apply the standard parameter shift
rule, and compare the variance of the resulting estimator with

FIG. 8. Finite difference approximation (solid lines), versus esti-
mated gradient via Algorithm [2} with error bars as in Fig. ] We
focus on C(x) with the definitions (I0) and model (BI)), for different
numbers of qubits N.

that obtained from the Stochastic Parameter Shift Rule. Note
that, unlike our Algorithm [2] the simpler parameter shift rule
cannot be applied to estimate 9,C.

In Fig. [6) we compare the standard deviation of Algo-
rithms|[T} 2} 3] We note that, although Algorithms[2] B]have ex-
tra sampling steps, the resulting variance is comparable with
that of Algorithm/[T}

We now study how the standard deviation might scale as a
function of the number of qubits. In Fig.[7(a) we focus on the
Stochastic Parameter Shift Rule, with the following choice of
states and operators in (T0)

N ey 09 69 o

\ . Rt .

Ha:;[axjax’ t5t5 ) Va=ol. Bl
N -

A=) 6, I6a) = 0}, (B1b)

1

~.
1l

where ¢/ means that the operator & is applied to the jthe
qubit and ¢V = ¢\". In Egs. (BT) we have chosen for A,
a many-body Hamiltonian with complex entangling dynamics
[42]. The empirical mean is shown in Fig. |§|f0r N =2,3,4.
Larger values of N are not shown, as they are similar to the
case N = 4. Since A, # 0 we cannot apply the standard
parameter shift rule of Fig.[T} Therefore, to compare the al-
gorithms [T] and 2] we need to introduce another model with
H = 0, namely where all gates depend on the parameters as
in Eq.[6] We build such a model using the same operators
introduced in Egs. (BI)) and define

H,=0, v, =ol, (B2a)

=

Aa — Z elHa/2é\_§j)ezHa/2 ,
J=1

Ipp) = /210N . (B2b)

By comparing Fig. [7[a) with Fig.[7(b), we note that the stan-
dard deviations of both estimators have the same order of
magnitude, that does not seem to increase too much with the
number of qubits N, at least for our choice of Hamiltonians. In



Fig. [7{a) we observe a slight non-monotonic increase, while
in Fig.[7{b) the results are basically independent on N. We be-
lieve that this difference is mostly due to the particular choice
of the models, Egs. and (B2), that although related are
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not identical. Therefore, we may conclude that the stochas-
tic parameter shift rule is basically as efficient as the standard
parameter shift rule, but it is more general.
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